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Retargeting Dynamics of a Linear Tethered Interferometer
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The study deals with the issue of changing the plane of rotation (retargeting) of a linear kilometer-sized formation
of two collectors and one combiner spacecraft connected by two tether arms. A control strategy is proposed that
makes use of a pair of electrical thrusters located onboard two of the three spacecraft to redirect the angular
momentum of the formation to a new target with an accuracy of a few arcseconds while keeping the angular
momentum magnitude constant throughout the maneuver. The thruster profile is optimized to achieve a very
smooth but relatively fast maneuver while maintaining the overall fuel consumption at a minimum level. The
attitude dynamics of the formation are solved analytically based on a perturbation method, which allows calibrating
the thrust profile for high-precision retargeting. A numerical model is employed to test the proposed strategy and
to evaluate the influence of massive flexible tethers and external perturbations on the accuracy of the maneuver.
Finally, the required propellant mass is evaluated with reference to envisioned space interferometry missions.

Introduction

RECISION retargeting of long-baseline formations in space,
both free-flying and structurally connected, is a key aspect of
many future space-borne interferometry missions.

First, the maneuver has to be performed with very high precision
to keep the optical path delay (OPD) between the apertures small
enough to be effectively compensated for by optical delay lines on-
board the combiner unit. Delay lines envisioned for future space
interferometers have a total stroke on the order of 10 cm, resulting
in a required pointing precision of about 20 in. when the interferom-
eter baseline reaches kilometer size. Second, the time spent for the
maneuver has to be kept to a minimum, because no scientific obser-
vation can be carried on during the maneuver. Third, the propellant
needed (for direct slewing or reaction-wheel desaturation) should
be minimized to save launch costs and most of all to avoid aper-
ture and thermal shield contamination by thruster plumes.' Last,
the maneuver should be designed with the required smoothness in
order to prevent the buildup of broadband vibrations that can satu-
rate the optical-path-delay control actuators. All these aspects are
considered in the present analysis.

The idea of using tether technology for interferometry purposes
was already explored in the late 1960s and early 1970s (Refs. 2—
4) through the use of gravity-gradient-stabilized systems. Later, in
the 1980s, Crellin® and Decou® proposed a concept of a three-body
spinning interferometer (Trio) that could be pointed at different in-
ertial targets. For the case of a tethered interferometer with linear
configuration the pointing stability of the formation during acqui-
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sition mode was investigated by Bombardelli et al.,” who provided
a method of relating the optical path delay of the interferometer
to the dynamics of the system. Although existing environmental
perturbations were examined, retargeting of the formation was not
addressed.

A description of a retargeting strategy for a two-dimensional for-
mation is given by Farley and Quinn,® who proposed the use of
thrusters located at the subapertures to precess the formation while
it spun. Farley and Quinn® show how the propellant consumption can
be minimized by performing the maneuver when the subapertures
are the farthest away from the center of rotation of the system.

This paper analyzes the maneuver in detail and proposes a novel
retargeting strategy suited for one-dimensional formations, which
allows high-precision pointing in a relatively short maneuver time.
The thrust direction during the maneuver is kept constantly orthog-
onal to the tether axis and to the direction of the instantaneous ve-
locity of each collector, with the advantages of avoiding stretching
the tethers and leaving the interferometer angular rate unchanged.
Furthermore, the thrust profile is shaped as a squared sine function
with zero derivatives at the edges in order to limit the buildup of
lateral oscillations at the end of each maneuver.

The pointing dynamics of the formation during the slewing pro-
cess are investigated in three steps:

1) The retargeting dynamics of a rigid dumbbell model for the
formation are solved analytically. We write the equations of motion
of the formation angular velocity in body axes and solve the attitude
kinematic equations with the aid of an asymptotic expansion for
a set of Euler angles. Knowing the Euler angles at the end of the
maneuver as a function of the thrust magnitude allows the calibration
of the thrust profile for precision retargeting.

2) The retargeting dynamics of a model composed of three point
masses connected by two flexible viscoelastic tether arms are solved
numerically with a high-fidelity lumped-mass model. The model
includes the effect of environmental perturbations acting while the
maneuver is being carried out. Tether thermal effects are also taken
into account.

3) The results from the two models are compared to assess how
the dynamics of the flexible tethers, the environmental perturbations,
and the presence of a third body in the middle of the configuration
influence the accuracy of the proposed maneuver.

Finally, the propellant consumption to change the angular mo-
mentum of the formation is computed with reference to envisioned
space interferometry missions.
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Optical Path Delay Stability

One of the most important parameters to be taken into account
when dealing with an interferometric system is the OPD between
each pair of subapertures (collectors) with respect to a central com-
bining unit (combiner).

The OPD is defined as the pathlength difference that the light
from the observed source experiences in reaching the combining
unit detector following two different paths: one through the first
collecting aperture and one through the second (Fig. 1).

The OPD depends not only on the relative positions of combiner
and collectors with respect to the target source but also on the relative
motion of optical components onboard each single unit induced by
structural vibrations (e.g., due to reaction-wheel disturbances) and
thermal loads.

To obtain a meaningful interferometric signal the rms of the OPD
must be limited to a value ranging from a fraction of a wavelength
to a few wavelengths, depending on the type of measurement. For
this reason, the combining unit is equipped with a series of actuators
(delay lines) properly controlled to keep the OPD below a prescribed
value. Given the spectrum of the overall OPD disturbances, the
delay-lines control loop may or may not be able to accomplish the
stabilization task.

In the present analysis we are interested in the part of the OPD
disturbances related to the motion of the three spacecraft, modeled
as point masses under the influence of the dynamics of the tethers
connecting them, the environmental perturbations, and the thruster
forces during a retargeting maneuver.

Following the scheme of Fig. 2, the OPD can be seen as a sum
of two components. The first is the difference [, — [; between the
distances of the two collectors to the combiner. For the case of a
tethered interferometer this component is influenced by the teth-
ers’ longitudinal dynamics and low-frequency differential thermal
elongation. The second OPD component (z, —z;) comes from the
fact that in general the ideal line joining the two apertures (base-
line) is not orthogonal to the source direction Z. This is due to the
action of external perturbations, the tethers’ lateral dynamics, and
mispointing of the average aperture rotation plane with respect to
the target.

Bombardelli et al.” show how the latter component of the OPD
disturbance is determined by the direction of the angular momentum
L of the system collector]1 + collector2, seen as point masses, with
respect to its barycenter. We will refer to L as the baseline pointing
vector of the formation. On the basis of this definition one can write

v
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Fig. 1 Schematic of interferometric OPD.

control loop
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Fig. 2 OPD arising from an offset between the apertures’ angular mo-
mentum and the source direction.

the equations of motion for L under the effect of the external torques
M., taking into account that the overall system angular momentum
also includes the tethers’ angular momentum L, and the central
combiner angular momentum Lp:

L(Z) = / M.y dt _Lle[h([) - Lcmb(l) (1)
0

The important consequence of Eq. (1) is that even in the absence
of external torques the baseline pointing dynamics (and therefore
the OPD) are perturbed by the tethers’ lateral dynamics through
an exchange of angular momentum between tethers and collecting
apertures at the tethers’ attachment points. Because a retargeting
thrusting maneuver can potentially excite the tethers’ lateral dy-
namics and give rise to angular momentum fluctuations between
tethers and collecting apertures, it is important to design it with the
required smoothness.

All in all, in an attempt to reduce the disturbances to be compen-
sated for by the OPD control loop, the retargeting algorithm has to
bring the baseline pointing vector as close as possible to the pre-
scribed target with the smallest amount of residual tether oscillation,
thereby reducing the maximum stroke and bandwidth required by
the control actuators.

Retargeting Strategy

The proposed retargeting strategy has the following characteris-
tics:

1) The thrust, provided by a high-precision propulsion system
located on two of the three platforms, is applied along a direction
always normal to the instantaneous rotation plane of the spinning
interferometer.

2) The thrust-time profile covers a portion of the overall rotation
period of the interferometer and is shaped as a sine-square function
in order to keep the tether lateral oscillations to a minimum (Fig. 3).

Directing the thrust as in characteristic 1 has the major advantage
of maintaining a constant modulus of the angular momentum and
therefore holding the angular rate of the formation at a constant
value without applying any additional tension along the tethers.

With regard to the position and orientation of the thrusters on the
platforms, two schemes are envisioned, as shown in Fig. 4. Scheme b
has the advantage of keeping the thruster exhaust away from the
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Fig. 3 Retargeting thrust profile.

a)

Fig. 4 Possible thruster firing schemes.
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optics at the price of greater fuel expenditure and greater thrust. By
switching the platform subjected to greater thrust for each retarget-
ing maneuver it is possible to equalize the mass variation throughout
the mission and in turn to limit the buildup of unbalanced solar-
radiation torques. As far as the attitude dynamics of the formation is
concerned, the two cases are very similar, and the following analysis
can be applied to both with few adjustments.

Precision Retargeting

Let us consider a spinning dumbbell system (modeled as two
equal point masses connected by a massless rigid rod) whose angular
momentum is initially pointed at the target A. Let the dumbbell
length be 2R and its initial spin rate w. Let (X, Y, Z) be an inertial
reference frame having Z oriented toward A, X lying along the
dumbbell axis at t =0, and (x, y, z) a body frame with x lying
along the dumbbell axis and z oriented as the dumbbell angular
momentum. Let ¢, and v be the precession and nutation angles by
which the body frame has to be rotated according to a 3—1-3 Euler
sequence so that the dumbbell angular momentum overlaps with a
destination target B, as shown in Fig. 5.

The objective of the analysis is to derive the thrust profile for
each collector (the scheme of Fig. 3a is considered) whose analytical
expression is

Fan(1) = frnax sin’[(t — 1)/ T] teltsto+T] (2)
so that the destination target can be reached with the required ac-
curacy. This requires estimating the appropriate maximum thrust
Jfmax and the start time 7y of the maneuver for a given target location
(Y ¢, vy) and maneuver duration 7.

Neglecting all of the external perturbations during the maneuver,
the forces acting on each end mass m are the tether tension 7" and
the thrust given by Eq. (2). Hence the equilibrium condition for each
end mass m, written in body axes in matrix form, yields

0 —o. @ | (mR
o. 0 —a || o
—o, @ 0 0
—? — o? ~
R CHONCN w0, mR 7
+ W Wy —wf — a),zc W, w, 0 =10
2_ 2
w0, wwy,  —w, -, 0 F,

©))

Before developing Eq. (3) we must point out that, regardless of
the forces acting on m, the y component of the angular veloc-
ity projected upon the body axes is zero at all times. In fact,
with the z body axis oriented (by definition) as the dumbbell an-
gular momentum and the x axis directed along the baseline al-
lows us to write the relation between angular velocity and angular

Fig. 5 Collector trajectories during retargeting and reference frames.

momentum as follows:

0 0 0 0
07 Offlw,]=10 )
0 0 I L
where [ is the dumbbell moment of inertia around the y and z axis, L
is the modulus of the angular momentum, and the moment of inertia

about the x axis (baseline) is assumed to be zero. From Eq. (4) we
obtain that

w, =0 )
Consequently, Egs. (3) yield
—mw’R=T (62)
mRw, =0 (6b)
mRw,w, = Fy, (6¢)

Not surprisingly, Egs. (6a) and (6b) show that the z component of the
angular velocity remains constant during the maneuver (and equal
to the initial angular rate w), as does the tether tension.

From Egs. (5) and (6) we can finally derive the three components
of the angular velocity to insert into the kinematic attitude equations
of the system. The three components are

w, = Fp/mwR (7a)
w0, =0 (7b)
w, =w (7¢)

The kinematic attitude equations can now be written based on a
2-1-3 Euler sequence (which, unlike the 3—1-3 sequence, does not
have a singularity for the initial orientation of the body axes), with
the rotation angles being respectively a;, a,, and a3, to yield’

. SiIlO{3 Fth(l‘)
0 =—— (8a)

cosa, mwR

Fun(t)

mwR

0y = COS O3 (8b)

. sinaj sinay Fy, (¢
03 = ——— t—() +w (8¢)
cosa,  mwR

Given the highly nonlinear character of Egs. (8) we choose to ap-
proach the problem with a perturbation method.

After substituting the expression for Fy, given by Eq. (2) and
rewriting Eqgs. (8) in nondimensional form we obtain

sinaz . , (7t
o = esin“| — (9a)
COS oy 0
TT
Gr = cos o3¢ sin® <7> (9b)
sin a3 sin T
by = RN, sin2<—) T 9c)
Ccos oy 0

where the nondimensional time variable is T = wt and the parame-
ters 6 and ¢ are defined as

0 =T (10)
€= fuun/mo’R an

Note that #;, was set to zero to simplify the notation with no loss of
generality.
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Itis important to point out the physical meaning of the parameters
0 and ¢. The former corresponds to the arc length that would be
traveled by each end mass for the duration of the maneuver if the
masses were to move along an arc of a circle. The latter parameter
(as shown in the following) corresponds to the ratio

& =21y/0 (12)

where vy is an approximation of v, [see Eq. (21)] obtained by posing

T
/ Fa()Rdt = Ly, (13)
0

Equation (12) can be derived by solving the integral in Eq. (13) with
Fin () expressed as in Eq. (2) and rewriting the expression of the
angular momentum as L = maR? to obtain

209 = (frar /me’R)0 (14)

After the definition of ¢ is taken into account, Eq. (14) leads to
Eq. (12).

In other words, as is clear from Eq. (13), vy is the angle by which
the angular momentum vector would rotate if its motion induced by
the torque Fy, R orthogonal to it were to be confined to an inertially
fixed plane.

The expansions of a1, «,, and a3 for small ¢ read

ai(e, 7) = ao(e, T) + a1 (6, T) + €012 (e, T)

+&a3(e, 1) + 0 (15a)
(e, T) = ano(e, T) + 0z (6, T) + E2an(e, T)

+&3ax(e, 7) + 0(eh) (15b)
as(e, T) = aso(e, T) + eas (e, T) + 2an(e, T)

+&3a(e, 1) + 0@ (15¢)

Plugging Eqgs. (15) into Eqgs. (9) and expanding in Taylor series for
small ¢ yields

. . 7T\ Sazg
— S =
0610+8|:0lu < o >Ca20i|

+&2| 6y — S? T\ a3 Cazp 4 a1 Sasg tan o
0 C(Xzo

+&3a;;— 82 T ! anCa —a;%lSa
13 0 ) Canm nCasz 5 D0

Sazy (o3 ay Sa
+ o[ 2L Conzg + anaSazg | + 212 2 (ot31 Catag Carzg
Coy \ 2 C?ay

+0l215012050130):|} +0@EH =0 (16a)

TT TT
Glag + a[aﬂ - 52(7>Ca30:| +&? |:d22 + 52 (7)013150530]

+&3a 2f T o) 4
& 0523+S 7 7C(X30+(X3251130 +0(8)—0

(16b)
a3 — 1+ £|:dl31 - Sz(%)saso tanoz201|
2] . 2f 7T
+e" a3 — S 7 [(Xz](S()l3QS(Xzo tan o + Sa30COlzo)

1
+ o3 SopCasgl t + &3 iz — S2 il
6 C0l20

a2
X |:(¥210631C0620C0!30 + Sazp <0622C0120 - %Sazo

2
a3
+ Say <0532C0l30 -5 50530)

2

+ SorzgSarzg (
Cay

2
o
2L Cay + an Sazo)

a1 Sarg
C2a20

(31 S0 Carzg Carso

+02152020S(¥30 + a21C2a205a30)]} + 0(84) =0 (160)

where § stands for sine and C for cosine.

An exact solution up to the third order was obtained analytically
with the help of symbolic manipulation software. For the sake of
brevity the third-order solution is not reported here. In the following
we focus on the second-order solution and calibrate the thrust profile
on that basis.

By solving the equations in cascade until the second order and
with zero initial conditions we obtain

ajp(r) =0 (17a)
ax(t) =0 (17b)
az(t) =1 (17¢)

11 (1) = [1/4(4n* — 0°){O°[C(kaT) + C ki) — 2C(7)]
+270 - [C(kyT) — C(ky )] + 87°[C(7) — 11} (17d)

a1 (1) = [1/4(¢47> — 00’ [~S(k7) — S(kiT) + 25(7)]

+276 - [~ S(kaT) + Sk )] — 8778 (0) } (17¢)
a31(7) =0 (179
an(t) =0 (17g)
an(t) =0 (17h)

s (1) = [1/64m (4m” — 07’ I{6°[S (2ksT) — 8S(ksT)]
+ 04 [4S(kyT) + 4S(kyT) — S(kaT) — S(kyT) — 6S(27)
+127] 4 7203 [—4S(ksT) + 48S (ks ) + 8S(ksT) — 8S(k37)
— 48 (ko) + 4S5k T)] + 720* [~ 168 (kaT) — 168 (k37)
—4S(kyT) — 4S(kiT) + 408 (27) — 807] + 7*0[—64S (ksT)

—328(kyT) + 328 (k3T)] + 7 [—645(27) + 1281]} (171)

where
ki = (0 42m)/0 (18a)

ky= (0 —2m)/0 (18b)

ks = (0 +m)/0 (18¢)

ky= (0 —m)/0 (18d)

ks = 27 /6 (18¢)

We must stress that the choice of a squared sine function for the
thrust profile is key to obtaining exact solutions for different orders,
as it renders the integrals solvable analytically.

Knowing the angles «; and o, allows the computation of the cor-
responding nutation and precession angles. This can be done by
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simply writing the inertial components of the angular momentum
unit vector both in terms of ¢, o (through the 2—1-3 transforma-
tion) and in terms of v, v (through the 3—1-3 transformation)°:

u (t) = {cos[ay(t)] sinfe; (7)]

— sin[as(7)], cos[a; (t)] cos[aa ()]} (19a)
u.(7) = {sin[v(x)] sin[y ()]
— sin[v(t)] cos[¥ (7)] cos[v(T)]}T (19b)
from which we derive
v(t) = cos™{cos[er; ()] cos[ea ()]} (20a)
= S g,

Given the desired nutation v the thrust profile is calibrated by
satisfying the condition

v(0) = cos™'{cos[a; (8)] cos[a2 ()]} = vy 21

which, assuming a second-order approximation for «; and oy,
becomes

cos(v;) = cos 27%(1 — cos6) cos 2m? sin98 22)
= 02 —ax? 02— 4x?

Finally, given the solution (v, ) of Eq. (22) and from the defini-
tion of ¢ given by Eq. (12), the value of f,,x necessary to reach the
target is

fmax = ma)zRg(va 9) (23)

A second-order estimate for the precession angle v (6) throughout
the maneuver can also be computed using Eq. (20b) by setting &
equal to £(vy, 0).

Once ¥ (0) is known, one can compute the maneuver start time
to reach the target as

=¥y —¥(O)]/o (24)
100 4
10 4
_ 3 ot
&
g 1 %
8 /
3 o —
' — e v=20°
0.01 4 viE10°
' § '/”_,,44»\4 —0—vf=5
0.001 4 / ;
15 30 45 60 75 90

0(deg)

The accuracy of the maneuver based on the algorithm presented
here has been tested by comparing the second- and third-order ap-
proximations with the numerical solution of Egs. (8).

The accuracy of the second-order approximation, although quite
good, does not reach (with the exception of small slew angles) the
level of a few arcseconds required by a long-baseline space inter-
ferometer.

The pointing errors obtained with a third-order approximation
are plotted in Fig. 6 for different values of the vy and 6 angles.
As expected, the wider the slew the less accurate the pointing, so
that for slew angles bigger than 10 deg it may be best to perform
a series of smaller maneuvers rather than trying to reach the tar-
get in a single step. This option would also have the considerable
advantage of decreasing the maximum thrust requirements on the
propulsion system. On the other hand, it seems reasonable to think
that the observing strategy of any space interferometry mission will
favor small-angle maneuvers, with the advantage of substantial fuel
saving. As far as the maneuver duration is concerned, the accu-
racy is negligibly affected by the value of 6 until it exceeds the
60-70-deg value, where the nutation and precession errors begin
to grow.

Figure 7 shows the evolution of the nutation and precession an-
gles (whose accuracies are plotted in Fig. 6) for different thrust du-
rations for an interferometer spinning at one revolution per 67 mm.
The plots were obtained by running the tether lumped-mass simu-
lation code and employing the thrust calibration strategy discussed
previously.

To completely assess the precision of a retargeting maneuver one
has to compute the maximum OPD variation caused by a given error
in the nutation and precession angles. After precession and nutation
(¥ + Ay, vy + Av) according to Eq. (19b), the pointing direction
vector yields

u(0) =[Sy + Av)S(W + AY),

Fig. 6 Dumbbell model nutation and precession errors (arcseconds) after retargeting.

s 7
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=Sy + AVC W + AY), C(vy + Av)]” (25)
whereas the direction of the destination target is
Liwg = [Sv;SY s, —Sv,Cyry, Cof]” (26)
100 —
/
& 10
> E .—/"—“«/
q
/ ——v=20°
+v'=10°
13 —o—v=5°
15 30 45 60 75 %
6(deg)
5 e
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4 ‘ s
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Fig. 7 Nutation—precession curves during retargeting with different thrust durations 7'.
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The angle between the two is obtained as
X = cos™! (uZTI:,arg) = cos™! {[cos(Av) cos(AY)] sinz(vf)
+ [sin(Av) cos(Ay) — sin(Av)]sin(vy) cos(vy)
+ cos(Av) cosz(vf)} 27

When Ay and Av are small, x can be approximated as

X =1/ Av2 4+ A2 sin’ Vs (28)

and the maximum of the OPD function is simply
OPDyax = 2R sin(y) (29)

The important conclusion from Eq. (28) is that precession errors
have a smaller influence on the OPD than nutation errors, the more
so the smaller the slewing angle of the maneuver.

For example, considering a 5-deg slew, an error affecting the
precession angle contributes about 10 times less than an error on
the nutation angle.

Effect of Flexible Tethers
and External Perturbations

The presence of massive flexible tethers will increase the total
angular momentum of the system by a very small percentage (the
collector/tether mass ratio is about 100:1) and most of all, as ex-
plained earlier, will cause angular-momentum fluctuations to rise
while the maneuver is being carried out.

The first point can easily be dealt with by adding the estimated
angular momentum of the tethers to the overall angular momentum
of the system and calculating the thrust profile as in Eq. (23):

froax = Meq@” RE(v, 0) (30

where m. is the equivalent mass representing the total momentum
of inertia of the system including tethers.

As far as the angular momentum fluctuations are concerned, they
can ideally be brought to zero at the end of the maneuver by tuning
the duration of the thrust profile to the tether oscillatory response,
as explained in Ref. 10. Lorenzini et al.!* also propose a very sim-
ple strategy to damp out lateral oscillations by means of an internal
damping system at the tethers’ attachment points. The strong point
of this strategy is the fact that it does not cause any drift in the forma-
tion pointing because the overall angular momentum of the system
is conserved. In fact, after the lateral and longitudinal tether oscil-
lations have been damped out, the system (in its minimum-energy
state) will ideally behave as a rigid dumbbell with the OPD varia-
tion being attributed only to the initial pointing error and external
perturbations.

Several retargeting cases have been run with a high-fidelity
lumped-mass numerical model of three 550-kg point-mass plat-
forms interconnected by two 5-kg and 500-m massive flexible
tethers spinning at one rotation every 67 mins and flying in an Earth-
trailing orbit under the influence of environmental and thermal per-
turbations. The results were found to differ by less than 5% from the
ones obtained with the dumbbell model case (shown in Fig. 6). We
can therefore conclude that the accuracy of the retargeting algorithm
proposed is not significantly degraded by the presence of the tethers
and the external perturbations. We must note that this conclusion is
valid as long as the formation is placed in a low-perturbation envi-
ronment (as is the case in an Earth-trailing heliocentric orbit or a
halo orbit around the L2 Lagrangian point) and is spun at a suffi-
ciently high rate to passively counteract the perturbations present in
that orbit.” Also, the fact of having the combining platform placed
at the system center of mass makes its effect on the accuracy of the
maneuver negligible. If the combiner is offset from the center of
mass then a thrusting action proportional to the platform distance to
the system center of mass is needed to properly change its angular
momentum.

Propellant Consumption

A tethered interferometer such as the one discussed here in does
not require any propellant for formation-keeping during an obser-
vation thanks to the constant centripetal acceleration available from
the tether tension and to its inherent gyroscopic stability, which
keeps the formation pointed without the need of thrust corrections.”
Consequently the only significant fuel expenditure is that required
for slewing the formation and possibly to spin it up or down if a
change in angular momentum is required.

Intuitively one would be prone to think that such a high-angular-
momentum system (for the system under consideration L can be on
the order of 10° Nms) would require a great amount of propellant
even for only a slew of only a few degrees. On the contrary, the fact
of having the thrust applied with a very long lever arm (500 m in
this case) from the center of mass of the formation reduces the fuel
consumption considerably.

Let B be the desired slew angle and L the angular momentum of
each aperture. The overall variation of angular momentum during
the maneuver is expressed as

T T 2
/ RFE,(1)dt :/ a = LB _meRB gy
0 0 N man

nman

where nm., < 1 is the efficiency of the retargeting maneuver and
accounts for the fact that L does not follow an arc of a circle (i.e., a
pure nutation with zero precession) because of the finite length of the
thrust interval. Results from numerical simulations show that 7, is
greater than 0.95 even for a fairly large thrust interval (6 =90 deg)
and tends to approach unity as the duration of the thrust is decreased.

From Eq. (31) the thrust impulse needed for each slewing ma-

neuver is
T
mwpPR
p= / Faty di = PR (32)
0

77 man

which, substituted into the well-known “rocket equation,” provides
the amount of fuel for each retargeting maneuver as

R
Mgl = M X [exp(ﬂ> - 1} (33)
Nman& Lsp

The total propellant mass per spacecraft over the entire mission must
take into account the number of targets observed N, and the average
slew angle B,, as follows:

RN,y
me = m x exp(u) —1 (34)
nmanglsp

To estimate m{,, we make the assumption that the average slew
angle throughout the mission is 5 deg. This is reasonable if the
observation strategy of the mission is optimized. Assuming a mass
of 550 kg for the collector and a specific impulse of 1000 s for the

thrusters we obtain the plot in Fig. 8.
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Fig. 8 Total propellant mass vs number of observed targets for differ-
ent baseline lengths.
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For our sample interferometer with two 550-kg collectors each
500 m from the center of rotation and assuming a total of 1000
retargeting maneuvers (over the mission lifetime of 5 years), the
total propellant consumption for retargeting is less than 10 kg. In
other words, the propellant mass onboard each collector amounts to
less than 1% of the total mass of the spacecraft.

Conclusions

An open-loop control strategy has been implemented that allows
high-precision retargeting of a kilometer-sized tethered interferom-
eter with one baseline and a linear configuration (i.e., with two col-
lectors and one combiner placed along a line). The maneuver, which
employs a pair of thrusters located on two of the three platforms,
can be performed rather quickly with high accuracy and extremely
low fuel consumption.

Particular attention has been given to the design of a very smooth
thrust profile with the result of keeping the tether lateral dynamics
at a minimum level.

The pointing accuracy obtainable with the open-loop strategy can
reach the level of a few arcseconds for slew angles of less than 10 deg
and is not affected significantly by the tether lateral dynamics during
the maneuver nor by the external perturbations.

The open-loop profile can form the basis of a feedforward feed-
back control strategy that compensates for actuator and sensor errors
not accounted for in this analysis.

The propellant needed for slewing a kilometer-sized formation
spinning at about one revolution per hour is less than 1% of each
collector mass for every thousand targets observed and an average
slew of 5 deg.
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